
The Concept of Almin

Almin is a State management
library for JavaScript

https://github.com/almin/almin

Almin features

» Scalable

» Medium-small(1,000LOC) – Large(100,000LOC)

» Testable

» Implement UseCase/Store/Domain as component

» Debuggable

» Logger/DevTools/Performance monitoring

» Layered Architecture

» DDD/CQRS

Different team structures imply
different architectural decisions.

— Clean Architecture Robert C. Martin

The Concept of Almin

» Write Your domain in Your code

» Split up Read stack and Write stack

» Unidirectional data flow

» Prefer Readable code to Writable code

» Monitor everything

Write Your domain in Your code

» You can control domain layer

» You can write your domain with Pure JavaScript

» Your domain is not need to subclass of Almin things

» Almin support application layer

» Application layer use your domain model

» If you stop to use almin, you don't need to rewrite your
domain

Example: UseCase

Almin provice UseCase class that is a part of application layer

import { UseCase } from "almin";
import yourDomain from "./your-domain";
export ApplicationUseCase extends UseCase {
 execute(){
 // Application Layer use your domain
 yourDomain.doSomething();
 }
}

Split up Read stack and Write stack

» In Flux/Redux

» Store has Application logic/state(M) and View state(N)

» The Complexity: N × M (multiplication)

» In Almin

» Domain has Application logic/state(M) – Write state

» Store has View state(N) - Read state

» The Complexity: N + M (addition)

Related topic: Command Query Responsibility Segregation(CQRS)

Example: Repository

» Almin help to support Repository pattern

» You can save your domain(application state) into the
repository

» Store read application state from the repository

» Store convert the application state to view state

Realted topic: Model View ViewModel(MVVM), ViewModel

Unidirectional data flow

View -> UseCase -> Store ... -> View -> UseCase -> Store

» UseCase only report success or failure that is Promise<void>

» UseCase can write to Store, But can not read from Store

» Store does't know any UseCase

» View can not write state to Store directly

» View can execute any UseCase

» View can observe the change of Store

Related topic: Flux

Prefer Readable code to Writable code

» Almin prefer Explicit/Readable code to Implicit/Writable code

» Almin support TypeScript language and Almin is type-safe

» Pros

» No magic code

» Just write and Just work

» Cons

» Redundancy

Monitor everything

» You can observe life-cycle events of almin

» logging events that are changing of state etc..

» Integrate almin into DevTools

» Profiling performance of almin with other library

» Illustrate your UseCase diagram

https://almin.js.org/docs/tips/usecase-lifecycle.html
https://github.com/almin/almin/tree/master/packages/almin-logger
https://github.com/almin/almin-devtools
https://almin.js.org/docs/tips/performance-profile.html
https://github.com/almin/almin-usecase-map-generator

 Conclusion
» ! Repo: almin/almin

» " Document: https://almin.js.org

» # Examples: almin/examples

» $ Work with React, Vue etc...

https://github.com/almin/almin
https://almin.js.org
https://github.com/almin/almin/tree/master/examples
https://reactjs.org/
http://vuejs.org/

Almin is for thinking code

https://github.com/almin/almin

