The Concept of Almin



Almin s a State management
l[ibrary for JavaScript



https://github.com/almin/almin

Almin features

> Scalable

> Medium-small(1,000LOC) — Large(100,000LOC)
> Testable

> Implement UseCase/Store/Domain as component
> Debuggable

> Logger/DevTools/Performance monitoring

> Layered Architecture

> DDD/CQRS



Different team structures imply
different architectural decisions.

— Clean Architecture Robert C. Martin



The Concept of Almin

> Write Your domain in Your code

> Split up Read stack and Write stack

> Unidirectional data flow

>> Prefer Readable code to Writable code

> Monitor everything



Write Your domain in Your code

> You can control domain layer

> You can write your domain with Pure JavaScript

> Your domain is not need to subclass of Almin things
> Almin support application layer

> Application layer use your domain model

> [f you stop to use almin, you don't need to rewrite your
domain



Example: UseCase

Almin provice UseCase class that is a part of application layer

import { UseCase } fxrom -
import youxrDomain from -
export ApplicationUseCase extends UseCase {
execute() {
// Application Layer use your domain

yourDomain.doSomething();



Split up Read stack and Write stack

> [n Flux/Redux
>> Store has Application logic/state(IM) and View state(N)
> The Complexity: N x M (multiplication)
> [n Almin
> Domain has Application logic/state(IM) — Write state
>> Store has View state(N) - Read state

> The Complexity: N + M (addition)

Related topic: Command Query Responsibility Segregation(CQRS)



Example: Repository

> Almin help to support Repository pattern

> You can save your domain(application state) into the
repository

>> Store read application state from the repository

> Store convert the application state to view state

Realted topic: Model View ViewModel(MVVM), ViewModel



Unidirectional data flow

View -> UseCase -> Store ... => View -> UseCase —-> Store

> UseCase only report success or failure that is Promise<void>
> UseCase can write to Store, But can not read from Store

> Store does't know any UseCase

> View can not write state to Store directly

> View can execute any UseCase

> View can observe the change of Store

Related topic: Flux



Write Stack Read Stack

Ul Layer React
Views

Ensm :

Domain Domain
Layer Model

Web : :

Infra Layer \ /




Prefer Readable code to Writable code

> Almin prefer Explicit/Readable code to Implicit/Writable code
> Almin support TypeScript language and Almin is type-safe
> Pros
> NO magic code
>> Just write and Just work
> Cons

> Redundancy



Monitor everything

> You can observe life-cycle events of almin

> logging events that are changing of state etc..

> [ntegrate almin into DevTools

> Profiling performance of almin with other library

> [llustrate your UseCase diagram



https://almin.js.org/docs/tips/usecase-lifecycle.html
https://github.com/almin/almin/tree/master/packages/almin-logger
https://github.com/almin/almin-devtools
https://almin.js.org/docs/tips/performance-profile.html
https://github.com/almin/almin-usecase-map-generator

SearchQueryAndOpenStreamUseCase [UserCase#execute] SearchQueryAndOpenStreamUseCa
StoreGroup [...Group#write] St...d] A...
GitH...ad]

0.26 ms GitHubSearchStreamStore [Store#receivePayload]

Tree Raw
IncrementalCounterUseCase +00:05.03

v counterState (pin)

N '"' mn1nyY" —
count (pin): & => @

UseCase:IncrementalCounterUseCase +00:00.01
DecrementalCounterUseCase Jump | Skip

UseCase:DecrementalCounterUseCase +00:00.00



% Conclusion

> ®\Repo: almin/almin

> B Document; https://almin.js.org

> B Examples; almin/examples

» & Work'with React, Vue etc. ..



https://github.com/almin/almin
https://almin.js.org
https://github.com/almin/almin/tree/master/examples
https://reactjs.org/
http://vuejs.org/

Almin 1s for thinking code



https://github.com/almin/almin

